Scale-up analysis for a CHO cell culture process in large-scale bioreactors.

نویسندگان

  • Zizhuo Xing
  • Brian M Kenty
  • Zheng Jian Li
  • Steven S Lee
چکیده

Bioprocess scale-up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell-free mixing studies were performed in production scale 5,000-L bioreactors to evaluate scale-up issues. Using the current bioreactor configuration, the 5,000-L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5- and 20-L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000-L configuration can only support a maximum viable cell density of 7 x 10(6) cells mL(-1). Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000-L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing-related engineering parameters in the 5,000-L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed-batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000-L bioreactors may need optimizing to mitigate the risk of different performance upon process scale-up.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can p...

متن کامل

Highly efficient inoculum propagation in perfusion culture using WAVE Bioreactor™ systems

Introduction A perfusion-based process was developed to increase the split ratio during the scale-up of CHO-STM cell cultures. Fedbatch cultures were inoculated with cells propagated in either batch or perfusion cultures. All cultures were grown in disposable CellbagTM bioreactors using the WAVE Bioreactor system. Cell concentrations of 4.8 × 10 cells/mL were achieved in the perfusion culture, ...

متن کامل

Highly efficient inoculum propagation in perfusion culture using WAVE BioreactorTM systems

Introduction A perfusion-based process was developed to increase the split ratio during the scale-up of CHO-STM cell cultures. Fedbatch cultures were inoculated with cells propagated in either batch or perfusion cultures. All cultures were grown in disposable CellbagTM bioreactors using the WAVE Bioreactor system. Cell concentrations of 4.8 × 10 cells/mL were achieved in the perfusion culture, ...

متن کامل

Novel orbital shake bioreactors for transient production of CHO derived IgGs.

Large-scale transient gene expression in mammalian cells is being developed for the rapid production of recombinant proteins for biochemical and preclinical studies. Here, the scalability of transient production of a recombinant human antibody in Chinese hamster ovary (CHO) cells was demonstrated in orbitally shaken disposable bioreactors at scales from 50 mL to 50 L. First, a small-scale multi...

متن کامل

Veterinary vaccine production using bioreactors: scale up study from laboratory and pd up to commercial production

Background Vaccination has proven itself as the most effective tool to control and prevent the disease and to facilitate the safe trade of live animals. Viral vaccine manufacturing processes present some specific constraints as compared to other biotech products linked to the cell substrate used and to the viral production. Multiple cell lines are used for productions such as VERO, MDCK, MRC5, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 2009